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Abstract— Three performance curves for evaluation of face 
recognition algorithms are introduced in this paper. Cumulative 
Match score Curves (CMC) is the curve between the rank and 
face recognition rate. Expected Performance Curves (EPC) is the 
graph between the alpha and error rate. Receiver Operating 
Characteristics (ROC) is the graph between false acceptance rate 
and verification rate. Twelve face recognition algorithms based 
on Eigen and Fisher features are compared based on these 
curves. The performances of all these algorithms are analyzed 
with respect to these metrics.    

Index Terms—Facial features, Principle Component Analysis, 
Kernel Fisher Analysis, Kernel Principle Component Analysis, 
Linear Discriminant Analysis, CMC, EPC, ROC. 

I. INTRODUCTION 
Face recognition aims at identifying the person’s 

distinctiveness by comparing the facial features with the 
available face data base features. The face data base, with 
known characteristics, is referred as the face gallery and the 
input face requiring determining the identity is the probe. One 
of the problems in face recognition is identification, and the 
other is the authentication (or verification). Of the two, face 
identification is more tricky as it cross verifies the gallery 
completely for minimum variance.  

Face recognition has been an important topic of research 
originated way back in the year 1961. Numerous algorithms 
are developed on face recognition particularly in the last two 
to three decades. Improving the Face recognition rate is 
always the challenge ever since the first algorithm was 
developed. In 1991, Alex Pentland and Matthew Turk [1], [3] 
– [5] applied Principal Component Analysis (PCA) which was
invented in 1901 to face classification. This has become the 
standard known as the eigenface method and is today an 
inspiration for all face recognition algorithms evolved. 
Sebastain Mike et. al. [2] competing with PCA which is an 
orthogonal linear transformation proposed Fisher Discriminant 
Analysis with Kernels (KFD). Being a non linear classification 
model, KFD has better performance over PCA. The problem 
with KFD is that it uses all the training samples in the solution 
not only the difficult ones which makes the algorithm slower 
and also complex.  

We compare algorithms namely PCA [6] – [10], LDA [11] 
– [12], KPCA [13] – [16], KFA [17] – [18], G-PCA, G- 

 
KPCA, G-LDA, G-KFA [21] – [26], PC-PCA, PC-KPCA, 

PC-LDA and PC-KFA [26].  

While numerous face recognition algorithms are being 
developed, the authors are comparing them with the existing 
ones very superficially and few simple comparisons are 
presented. Given that large set of techniques and the theories 
that are applicable for face recognition, it is evident that the 
detailed analysis and bench marking these algorithms is very 
crucial. Effort done by Universities and research laboratories 
in developing the data sets pushed the comparisons of face 
recognition algorithms to the higher level. CMC, ROC and 
EPC curves [19] – [20] were introduced for comparisons. 
Apart from finding the recognition rate, these curves become 
the basis for showing the superiority of the author’s developed 
algorithms.  

The contributions of this paper are as follows: 
• Twelve face recognition algorithms are compared

using performance metrics. 
• Extensive comparisons are made by taking the

performance metrics curves namely CMC, EPC 
and ROC[20].  

II. RELATED WORK

Face recognition methods mainly deal with images which 
are of large dimensions. This makes the task of recognition 
very difficult. Dimensionality reduction is a concept which is 
introduced for the purpose of reducing the image dimensions. 
PCA is the most widely used dimensionality reduction and 
also for subspace projection. PCA can supply the client with a 
lower-dimensional picture, a projection of this object when 
seen from its informative view point. This can be achieved by 
taking only the starting few principal components in such a 
way that the dimension of the transformed data is minimized. 
The linear combination of pixel values here in PCA are called 
Eigen faces. PCA is an unsupervised and it ignores all the 
class labels. It treats the entire data as a whole. It uses SVD for 
dimensionality reduction. PCA is however not optimized for 
class separability. An alternative is proposed by Ronald Fisher 
which is Linear Discriminant Analysis (LDA).  This cares for 
class seperability. Being a supervised, it performs well when 
the dataset contains more number of face images. PCA, 
however performs well if the data set is very small. PCA is 
primarily used for feature extraction whereas LDA is used for 
classification. For non-linear structures, kernel based 
algorithms are developed. By using the PCA or LDA for high 
dimensional mapping, the computational time is greatly 
increased. To use the PCA and LDA for higher dimensions, 
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kernel based algorithms are developed. The kernel based PCA 
is called Kernel Principal Component Analysis (KPCA) and 
the kernel based LDA is called Kernel Fisher Analysis (KFA). 
These kernel functions enable the algorithms to operate at 
higher dimensions without computing the data coordinates in 
the higher space. Rather it simply computes the inner products 
between the images of all pairs of data in the feature space. 
These kernel based algorithms are computationally cheaper 
than the explicit computation of the coordinates which is done 
in PCA and LDA.  

Among all these kernel trick based methods, Kernel Fisher 
Analysis is computationally simple. It needs only the 
factorization of gram matrix calculated with the given training 
examples. The other kernel based methods namely KPCA 
solves convex optimization problems. The beauty of the KFA 
is that it is comparable to the famous SVD classifier. These 
four methods are considered for conducting experiments. 
Apart from these four, their Gabor and phase congruency 
based methods are also included. Gabor filter is spatially and 
frequency localized. Because of this it can achieve desired 
frequency resolution. For normal face images, Gabor 
representation is sparser than the pixel representation.  

In phase congruency based method, first the phase 
congruency features are calculated. Instead of probing for dots 
of high intensity gradients, the model finds out those points in 
the face image Region Of Interest (ROI) where the 2-D log 
Gabor filter output over a number of orientations and scales 
are maximum in phase. Therefore, a point in the image is of 
high value only if the phase responses of the log-Gabor filters 
over a range of orientations and scales display different kind 
of order. Phase congruency acts as an edge (or line) descriptor 
of an image and is, unlike gradient based edge-detectors, it is 
not susceptible to the image variations affected by blurring, 
magnification, illumination and alike [38] – [39]. It is robust 
to image variations and it stems from the multi-orientation and 
multi-scale approach to phase congruency calculation and also 
from the fact that phase rather than magnitude information is 
considered for edge (or line) detection. 

Three performance metrics curves are considered. 
Cumulative Match Score Curves (CMC) is the curve between 
the rank on the x-axis and face recognition rate on the y-axis. 
Expected Performance Curves (EPC) is the graph between the 
alpha and error rate. Receiver Operating Characteristics 
(ROC) is the graph between false acceptance rate and 
verification rate. ROC curves are more informative and EPC 
curves are hard to compute and read. EPC curves need a 
separate development set. But this problem of EPC curves can 
be taken care by relying on the cross-validation techniques.   

 
In this work we take these four namely PCA, KPCA, LDA 

and KFA and their extension algorithms (Gabor based [21] –
[25] and Phase Congruency [26] based face recognition 
algorithms) and show how by using this new recognition 
engine for these algorithms, the performance of these 
algorithms is optimized.  

III. FACE RECOGNITION ALGORITHM 
A typical face recognition algorithm is presented in this 
section. For any face recognition algorithm, there are two 
phases. One is training phase and the other is the testing phase. 
In the training phase, the features of all the faces in the gallery 
are found and stored in the data base. Eigen features are taken 
in the sample face recognition algorithm shown below in the 
figure 1. In the testing phase, the features of the probe are 
calculated. These features and the features of the gallery are 
given to any of the classifier. SVD classifier is taken as 
example in the figure. The Eigen features of the probe and the 
Gallery are taken by the SVD. The classifier looks for the 
closest feature matching face from the gallery with the probe 
and gives that face as output. Figure1 shows the sample face 
recognition algorithm block diagram.  

 
Fig.1 existing face recognition system 

IV. PRINCIPAL COMPONENT ANALYSIS 
PCA can be thought of as fitting an n-

dimensional ellipsoid to the data, where each axis of the 
ellipsoid represents a principal component. If some axis of the 
ellipse is small, then the variance along that axis is also small, 
and by omitting that axis and its corresponding principal 
component from our representation of the dataset, we lose 
only a commensurately small amount of information. 

To find the axes of the ellipse, we must first subtract the 
mean of each variable from the dataset to center the data 
around the origin. Then, we compute the covariance matrix of 
the data, and calculate the Eigen values and corresponding 
eigenvectors of this covariance matrix. Then, we must 
orthogonalize the set of eigenvectors, and normalize each to 
become unit vectors. Once this is done, each of the mutually 
orthogonal, unit eigenvectors can be interpreted as an axis of 
the ellipsoid fitted to the data. The proportion of the variance 
that each eigenvector represents can be calculated by dividing 
the Eigen value corresponding to that eigenvector by the sum 
of all Eigen values. 

PCA is mathematically defined as an orthogonal linear 
transformation that transforms the data to a new coordinate 
system such that the greatest variance by some projection of 
the data comes to lie on the first coordinate (called the first 
principal component), the second greatest variance on the 
second coordinate, and so on. 
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Consider a data matrix, X, with column-wise zero empirical 
mean (the sample mean of each column has been shifted to 
zero), where each of the ‘n’ rows represents a different 
repetition of the experiment, and each of the ‘p’ columns gives 
a particular kind of feature. 

Mathematically, the transformation is defined by a set of p-
dimensional vectors of weights 
or loadings )(1 ),......( kpk ww=w that map each row 

vector )(ix  of X to a new vector of principal 

component scores )(1 ),......( ikk ww=t , given by 

)()()( . kiik wxt =
                                                        (1)

 

in such a way that the individual variables of ‘t’ considered 
over the data set successively inherit the maximum possible 
variance from ‘x’, with each loading vector ‘w’ constrained to 
be a unit vector. 

A. First component 

The first loading vector w(1) thus has to satisfy
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Since w(1) has been defined to be a unit vector, it 
equivalently also satisfies 
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The quantity to be maximized can be recognized as 
a Rayleigh quotient. A standard result for a symmetric matrix 
such as XTX is that the quotient's maximum possible value is 
the largest Eigen value of the matrix, which occurs when w is 
the corresponding eigenvector. 

With w(1) found, the first component of a data vector x(i) can 
then be given as a score t1(i) = x(i) ⋅ w(1) in the transformed co-
ordinates, or as the corresponding vector in the original 
variables, {x(i) ⋅ w(1)} w(1). 

Further components 
The kth component can be found by subtracting the 

first k − 1 principal component from X: 

∑
−

=

−=
1

1
)()(

ˆ
k

s
s

T
sk wwXXX

                          (5)
 

and then finding the loading vector which extracts the 
maximum variance from this new data matrix 
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It turns out that this gives the remaining eigenvectors 

of XTX, with the maximum values for the quantity in brackets 
given by their corresponding Eigen values. Thus the loading 
vectors are eigenvectors of XTX. 

The kth component of a data vector x(i) can therefore be 
given as a score tk(i) = x(i) ⋅ w(k) in the transformed co-
ordinates, or as the corresponding vector in the space of the 
original variables, {x(i) ⋅ w(k)} w(k), where w(k) is the kth   
eigenvector of XTX. 

The full principal components decomposition of X can 
therefore be given as 

T=XW                                                                   (7) 
where W is a p-by-p matrix whose columns are the 

eigenvectors of XTX 

B. Covariance 
XTX itself can be recognized as proportional to the 

empirical sample covariance matrix of the dataset X. 
The sample covariance Q between two of the different 

principal components over the dataset is given by: 
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where the eigen value property of w(k) has been used to 
move from line 2 to line 3. However 
eigenvectors w(j) and w(k) corresponding to eigen values of a 
symmetric matrix are orthogonal (if the eigen values are 
different), or can be orthogonalised (if the vectors happen to 
share an equal repeated value). The product in the final line is 
therefore zero; there is no sample covariance between 
different principal components over the dataset. 

Another way to characterize the principal components 
transformation is therefore as the transformation to 
coordinates which diagonalise the empirical sample 
covariance matrix. 

In matrix form, the empirical covariance matrix for the 
original variables can be written 

TT WWXXQ Λ=α                                            (9) 
The empirical covariance matrix between the principal 

components becomes 

Λ=Λ WWWWQWW TTT α                       (10) 
where Λ is the diagonal matrix of eigenvalues λ(k) of XTX 
(λ(k) being equal to the sum of the squares over the dataset 

associated with each component k: λ(k) = Σi tk
2

(i) = 
Σi (x(i) ⋅ w(k))2) 

C. Dimensionality reduction 
The transformation T = X W maps a data vector x(i) from an 

original space of p variables to a new space of p variables 
which are uncorrelated over the dataset. However, not all the 
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principal components need to be kept. Keeping only the 
first L principal components, produced by using only the 
first L loading vectors, gives the truncated transformation 

LL XWT =                                                         (11) 

where the matrix TL now has n rows but only L columns. In 

other words, PCA learns a linear transformation  
LpT RtRxxWt ∈∈= ,,                                            (12) 

Where the columns of p × L matrix W form an orthogonal 
basis for the L features (the components of representation t) 
that are decorrelated. By construction, of all the transformed 
data matrices with only L columns, this score matrix 
maximizes the variance in the original data that has been 
preserved, while minimizing the total squared reconstruction 
error  

2

2

T
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                                                      (13)

 

 or   
2
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Such dimensionality reduction can be a very useful step for 

visualizing and processing high-dimensional datasets, while 
still retaining as much of the variance in the dataset as 
possible. For example, selecting L = 2 and keeping only the 
first two principal components finds the two-dimensional 
plane through the high-dimensional dataset in which the data 
is most spread out, so if the data contains clusters these too 
may be most spread out, and therefore most visible to be 
plotted out in a two-dimensional diagram; whereas if two 
directions through the data (or two of the original variables) 
are chosen at random, the clusters may be much less spread 
apart from each other, and may in fact be much more likely to 
substantially overlay each other, making them 
indistinguishable. 

Similarly, in regression analysis, the larger the number 
of explanatory variables allowed, the greater is the chance 
of over fitting the model, producing conclusions that fail to 
generalize to other datasets. One approach, especially when 
there are strong correlations between different possible 
explanatory variables, is to reduce them to a few principal 
components and then run the regression against them, a 
method called principal component regression. 

Dimensionality reduction may also be appropriate when the 
variables in a dataset are noisy. If each column of the dataset 
contains independent identically distributed Gaussian noise, 
then the columns of T will also contain similarly identically 
distributed Gaussian noise (such a distribution is invariant 
under the effects of the matrix W, which can be thought of as 
a high-dimensional rotation of the co-ordinate axes). However, 
with more of the total variance concentrated in the first few 
principal components compared to the same noise variance, 
the proportionate effect of the noise is less—the first few 
components achieve a higher signal-to-noise ratio. PCA thus 

can have the effect of concentrating much of the signal into 
the first few principal components, which can usefully be 
captured by dimensionality reduction; while the later principal 
components may be dominated by noise, and so disposed of 
without great loss. 

D. Singular value decomposition 
The principal components transformation can also be 

associated with another matrix factorization, the singular value 
decomposition (SVD) of X, 

TWUX ∑=                                                     (14) 
 
Here Σ is an n-by-p rectangular diagonal matrix of positive 

numbers σ(k), called the singular values of X; U is an n-by-
n matrix, the columns of which are orthogonal unit vectors of 
length n called the left singular vectors of X; and W is a p-by-
p whose columns are orthogonal unit vectors of length p and 
called the right singular vectors of X. 

In terms of this factorization, the matrix XTX can be written 

T
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Comparison with the eigenvector factorization 

of XTX establishes that the right singular vectors W of X are 
equivalent to the eigenvectors of XTX, while the singular 
values σ(k) ofX are equal to the square roots of the 
eigenvalues λ(k) of XTX. 

Using the singular value decomposition the score 
matrix T can be written 

∑=

∑=

=

U
WWU

XWT
T

                                                    (16)

 

so each column of T is given by one of the left singular 
vectors of X multiplied by the corresponding singular value. 
This form is also the polar decomposition of T. 

Efficient algorithms exist to calculate the SVD of X without 
having to form the matrix XTX, so computing the SVD is now 
the standard way to calculate a principal L components 
analysis from a data matrix, unless only a handful of 
components are required. 

As with the eigen-decomposition, a truncated n × L score 
matrix TL can be obtained by considering only the first L 
largest singular values and their singular vectors: 

 

LLLL XWUT =∑=                                        (17) 

The truncation of a matrix M or T using a truncated singular 
value decomposition in this way produces a truncated matrix 
that is the nearest possible matrix of rank L to the original 
matrix, in the sense of the difference between the two having 
the smallest possible Frobenius norm, a result known as the 
Eckart–Young theorem. 
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V. KERNEL PRINCIPAL COMPONENT ANALYSIS 
To perform kernel based PCA, the following steps have to be 
carried out. First we compute the dot product matrix  

ijjiij kK )),(( xx=
                                                        (18)

 

Next we solve  
Mλα=Kα                                                                               (19) 
By diagonalizing K, and normalize the Eigen vector expansion 
coefficients αn 

By requiring  

l=λn(αn.αn)                                         (20)       

 
Fig. 2. Linear PCA and Kernel PCA graphical view 

To extract the principal components corresponding to the 
kernel k of a test point x, we then compute projections onto 
the Eigen vectors by  
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We know that this procedure exactly corresponds to standard 
PCA in some high-dimensional feature space except that we  
do not need to perform expensive computation in that space. 

VI. LINEAR DISCRIMINANT ANALYSIS 
Intuitively, the idea of LDA is to find a projection where 

class separation is maximized. Given two sets of labeled 
data, C1 and C2, define the class means m1 and m2 to be 
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where li is the number of examples of class Ci. The goal of 
linear discriminant analysis is to give a large separation of the 
class means while also keeping the in-class variance 
small. This is formulated as maximizing 
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where SB is the between-class covariance matrix and SW is 
the total within-class covariance matrix: 
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Differentiating J(w) with respect to w, setting equal to zero, 
and rearranging gives 

wSwSwwSwSw BW
T

WB
T )()( =               (25) 

Since we only care about the direction of w and SBw has the 
same direction as (m2-m1) , SBw can be replaced by (m2-
m1) and we can drop the scalars (wTSBw)and (wTSWw) to give 

)( 12
1 mmSw =−
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VII. KERNEL FISHER ANALYSIS 
To extend LDA to non-linear mappings, the data, given as 

the l points xi, can be mapped to a new feature space, F, via 
some function ϕ. In this new feature space, the function that 
needs to be maximized is 
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Further, note that wЄF. Explicitly computing the 
mappings ϕ(xi) and then performing LDA can be 
computationally expensive, and in many cases intractable. For 
example, F may be infinitely dimensional. Thus, rather than 
explicitly mapping the data to F, the data can be implicitly 
embedded by rewriting the algorithm in terms of dot 
products and using the kernel trick in which the dot product in 
the new feature space is replaced by a kernel 
function, k(x,y)=ϕ(x).ϕ(y) 

LDA can be reformulated in terms of dot products by first 
noting that w will have an expansion of the form 
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Then note that 
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With these equations for the numerator and 
denominator of J(w), the equation for J can be rewritten as 
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Then, differentiating and setting equal to zero gives 
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αααααα MNNM )()( TT =                     (30) 
Since only the direction of w, and hence the direction of α, 

matters, the above can be solved for α as 

)( 12
1 MMN −= −α                                  (31) 

Note that in practice, N is usually singular and so a multiple 
of the identity is added to it  

INN εε +=                                            (32) 
Given the solution for α, the projection of a new data point 

is given by 
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VIII. GABOR FILTER 
In image processing, a Gabor filter, named after Dennis 

Gabor, is a linear filter used for edge detection. Frequency and 
orientation representations of Gabor filters are similar to those 
of the human visual system, and they have been found to be 
particularly appropriate for texture representation and 
discrimination. In the spatial domain, a 2D Gabor filter is 
a Gaussian kernel function modulated by a sinusoidal plane 
wave. 

Simple cells in the visual cortex of mammalian brains can 
be modeled by Gabor functions. Thus, image analysis with 
Gabor filters is thought to be similar to perception in 
the human visual system. 

 
Fig. 3. Example of a two-dimensional Gabor filter 

 
A. Extraction of features from images 

A set of Gabor filters with different frequencies and 
orientations may be helpful for extracting useful features from 
an image. In the discrete domain, two-dimensional Gabor 
filters are given by, 
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   (34)  

where B and C are normalizing factors to be determined. 2-
D Gabor filters have rich applications in image processing, 
especially in feature extraction for texture analysis and 
segmentation.  

 ‘f’ defines the frequency being looked for in the texture. By 
varying θ, we can look for texture oriented in a particular 
direction. By varying, σ we change the support of the basis or 
the size of the image region being analyzed. 

 

IX. PHASE CONGRUENCY 
Phase congruency is a measure of feature significance in 

computer images, a method of edge detection that is 
particularly robust against changes in illumination and contrast 

Phase congruency reflects the behavior of the image in 
the frequency domain. It has been noted that edge like features 
have many of their frequency components in the same phase. 
The concept is similar to coherence, except that it applies to 
functions of different wavelength. 

For example, the Fourier decomposition of a square 
wave consists of sine functions, whose frequencies are odd 
multiples of the fundamental frequency. At the rising edges of 
the square wave, each sinusoidal component has a rising 
phase; the phases have maximal congruency at the edges. This 
corresponds to the human-perceived edges in an image where 
there are sharp changes between light and dark. 

 
1) Gallery images 

 
Fig. 4. First face image of all 40 people in the ORL database 

 

 
Fig. 5. All 10 images of first person from ORL database. 
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Here for experiment purpose the simple database AT&T 
ORL data base has been taken. There are 40 set of faces in the 
data base and each set has 10 images. Figure 4 shows the first 
40 images of ORL dataset and Figure 5 shows all the ten 
images of the first person in the ORL database. The first 8 
images from each set are considered for training and the 
remaining two images from the data set are considered for 
testing purpose. The total number of images considered for 
training are 320 and for testing are 40. The features of all the 
face images in the training group are extracted using Eigen 
feature extraction. This Eigen feature extraction preserves the 
edges and also the directionality of the edge information. Here 
SVD classifier is used. This is a non probabilistic binary 
classifier which looks for optimal hyperplane as a decision 
function. In the testing phase, the test image is taken and given 
to the SVD classifier for classification.  

 
The face recognition rate is calculated as 
 

100*
dataset in the persons ofnumber  Total

matchedproperly  areset which  data in the images ofnumber  Total

          (34)    
 

The images considered in the numerator of (34) are the test 
images. These images are excluded from the dataset of the 
denominator.  

Figures from 6 to 12 shows the Eigen faces of first 10, 20, 
30, 40, 50, 60, 70, 80, 90, 100, 200, 300 and 400 images from 
ORL database. 

 
 

 
Fig. 6. Eigen faces of first 10 and 20 images from ORL database. 

 
 

 
Fig. 7. Eigen faces of first 30 and 40 images from ORL database. 

 
 

 
Fig. 8. Eigen faces of first 50 and 60 images from ORL database. 

 
Fig. 9. Eigen faces of first 70 and 80 images from ORL database. 

 

 
Fig. 10. Eigen faces of first 90 and 100 images from ORL database. 

 

 
Fig. 11. Eigen faces of first 200 and 300 images from ORL database. 

 

 
 

Fig. 12. Eigen faces of all 400 images from ORL database. 
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X. EXPERIMENTAL RESULTS 
Experiments have been conducted on proposed algorithm 

by taking ORL AT&T data base [29]. For training phase the 
first eight face images are taken and for the testing purpose the 
last two face images are taken.  

TABLE I 
OUTPUTS OF DIFFERENT FACE RECOGNITION ALGORITHMS FOR TEST FACE 1 
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S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 

S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 

S3 S3 S35 S3 S3 S38 S3 S3 S3 S35 S30 S38 S30 

S4 S4 S4 S4 S36 S17 S4 S4 S4 S4 S4 S17 S4 

S5 S5 S5 S5 S17 S5 S5 S5 S5 S5 S5 S5 S5 

S6 S6 S4 S6 S13 S6 S6 S17 S6 S4 S6 S6 S6 

S7 S7 S7 S7 S8 S7 S7 S7 S7 S7 S7 S7 S7 

S8 S8 S30 S8 S8 S8 S8 S8 S8 S30 S8 S8 S8 

S9 S9 S9 S12 S22 S9 S9 S9 S9 S9 S9 S9 S9 

S10 S10 S10 S10 S10 S10 S10 S10 S10 S10 S10 S10 S10 

S11 S11 S11 S34 S15 S22 S11 S11 S11 S11 S32 S22 S32 

S12 S12 S12 S12 S12 S40 S12 S12 S12 S12 S12 S40 S12 

S13 S13 S13 S13 S40 S25 S13 S13 S13 S13 S13 S25 S13 

S14 S14 S28 S14 S14 S14 S14 S14 S14 S28 S20 S14 S20 

S15 S15 S29 S15 S15 S40 S15 S15 S15 S29 S1 S40 S1 

S16 S1 S16 S28 S1 S20 S16 S28 S16 S16 S16 S20 S16 

S17 S17 S17 S36 S17 S17 S17 S17 S17 S17 S17 S17 S17 

S18 S18 S18 S18 S18 S18 S18 S18 S18 S18 S18 S18 S18 

S19 S19 S19 S19 S25 S37 S19 S19 S19 S19 S6 S37 S6 

S20 S20 S40 S20 S22 S20 S20 S20 S20 S40 S20 S20 S20 

S21 S21 S21 S24 S6 S21 S21 S21 S21 S21 S21 S21 S21 
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S23 S23 S23 S23 S23 S22 S23 S23 S23 S23 S23 S22 S23 

S24 S24 S3 S24 S31 S21 S24 S24 S24 S3 S24 S21 S24 

S25 S25 S7 S39 S25 S25 S25 S25 S25 S7 S38 S25 S38 

S26 S26 S4 S26 S26 S6 S26 S26 S26 S4 S26 S6 S26 

S27 S27 S27 S27 S14 S27 S27 S27 S27 S27 S27 S27 S27 

S28 S1 S28 S28 S28 S28 S28 S18 S28 S28 S26 S28 S26 

S29 S40 S30 S29 S40 S18 S29 S40 S29 S30 S29 S18 S29 

S30 S30 S30 S30 S23 S30 S30 S30 S30 S30 S30 S30 S30 

S31 S31 S30 S31 S31 S31 S31 S31 S31 S30 S31 S31 S31 

S32 S32 S21 S32 S32 S32 S32 S32 S32 S21 S16 S32 S16 

S33 S33 S33 S31 S30 S25 S33 S33 S33 S33 S35 S25 S35 

S34 S34 S34 S34 S1 S34 S34 S34 S34 S34 S34 S34 S34 

S35 S35 S3 S30 S35 S35 S35 S35 S35 S3 S35 S35 S35 

S36 S36 S36 S36 S12 S36 S36 S36 S36 S36 S36 S36 S36 

S37 S37 S32 S37 S37 S27 S37 S37 S37 S32 S37 S27 S37 

S38 S38 S38 S38 S38 S6 S38 S38 S38 S38 S38 S6 S38 

S39 S39 S33 S39 S39 S2 S39 S39 S39 S33 S21 S2 S21 

S40 S40 S21 S40 S25 S40 S40 S40 S40 S21 S40 S40 S40 

 

 
 
 
 

TABLE II 
OUTPUTS OF DIFFERENT FACE RECOGNITION ALGORITHMS FOR TEST FACE 2 
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S9 S9 S12 S9 S9 S9 S9 S9 S9 S9 S9 S9 S9 

S10 S10 S10 S10 S40 S10 S10 S10 S10 S10 S10 S10 S10 

S11 S11 S34 S11 S15 S22 S32 S11 S11 S11 S11 S22 S32 

S12 S12 S12 S12 S12 S40 S12 S12 S12 S12 S12 S40 S12 

S13 S13 S13 S13 S13 S25 S13 S13 S13 S13 S13 S25 S13 

S14 S14 S14 S28 S30 S14 S20 S28 S14 S14 S14 S14 S20 
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S35 S35 S30 S3 S35 S35 S35 S3 S35 S35 S35 S35 S35 

S36 S36 S36 S36 S40 S36 S36 S36 S36 S36 S36 S36 S36 

S37 S37 S37 S32 S22 S27 S37 S32 S37 S37 S37 S27 S37 

S38 S38 S38 S38 S38 S6 S38 S38 S38 S38 S38 S6 S38 

S39 S39 S39 S33 S39 S2 S21 S33 S39 S39 S39 S2 S21 

S40 S40 S40 S21 S25 S40 S40 S21 S40 S40 S40 S40 S40 
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All the 12 different prominent face recognition algorithms 
namely PCA, KFA, KPCA, LDA, Gabor based algorithms and 
Phase Congruency based algorithms are compared [35].   

 
 

 
Fig. 13. Comparison of FR algorithms with respect to CMC curves 

 
Fig. 14. Comparison of FR algorithms with respect to EPC curves 

 
Fig. 15. Comparison of FR algorithms with respect to ROC curves 

 
TABLE III 

DIFFERENT DATASETS AND THEIR TOTAL NUMBER OF IMAGES AND PERSONS 

Data base 
Total 

number of 
persons 

Pose, 
Illumination 

and facial 
expression 
variations 

Total 
number 
of face 
images 

Yale Database 
[27] 

15 
 11 165 

Yale Face 
Database ‘B’ 

[28] 
10 64 illumination 

9 poses 5760 

MIT CBCL [30] 10 524 5240 
University of 

Essex, UK [31] 395 20 7900 

JAFFE [32] 60 7 420 
Sheffield [33] 20 25-30 564 
Caltech [34] 27 10-20 450 

Senthil Kumar 
IRTT v1.2 [36] 10 10 100 

Senthil Kumar 
IRTT v1.1 [37] 5 16 80 

 
 

 

TABLE IV 
DIFFERENT DATASETS AND THEIR TOTAL NUMBER OF IMAGES AND PERSONS 

USED IN THIS EXPERIMENT 
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Yale Database 
   
15 

 
11 9 2 88.26 97.25 

Yale Face 
Database ‘B’ 10 10 8 2 80.01 81.38 

MIT CBCL 10 10 8 2 64.25 61.07 
University of 

Essex, UK 40 20 16 4 70.0 77.0 

JAFFE 60 7 6 1 71.2 80 
Sheffield 20 25 20 5 61.8 77.5 
Caltech 25 15 13 2 70.12 62.5 

Senthil Kumar 
IRTT v1.2 10 10 8 2 86.5 79.26 

Senthil Kumar 
IRTT v1.1 5 16 14 2 75.8 77.9 

 
In case of testing images taken are more than one, then the 

face recognition rate is calculated by taking the average of the 
face recognition rates of all the testing images.  

The performance metrics for different algorithms shown 
below are with ORL database. Table IV and Table V shows 
the comparison of face recognition rates of PCA and KPCA. 
One algorithm based on the Eigen face features and another 
algorithm based on the fisher face features are compared. 
Figure 13 shows the CMS curve comparison of all the Eigen 
and fisher feature based algorithms. Similarly figure 14 and 15 
shows the comparison of EPC and ROC curves.  

XI. CONCLUSIONS 
In this paper, three performance metrics for face recognition 

algorithm are introduced. 12 prominent face recognition 
algorithms based on Eigen face features and Fisher face 
features are compared with respect to these performance 
metrics. Ten face data bases are taken for comparing the face 
recognition rate of these algorithms.  
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